| 数组的完全随机排列算法javascript实现 |
Array.prototype.sort 方法被许多 JavaScript 程序员误用来随机排列数组。最近做的前端星计划挑战项目中,一道实现 blackjack 游戏的问题,就发现很多同学使用了 Array.prototype.sort 来洗牌。就连最近一期 JavaScript Weekly上推荐的一篇文章也犯了同样的错误。 5H3977 http://blog.numino.net/ 以下就是常见的完全错误的随机排列算法: XDbi0s http://blog.numino.net/ function shuffle(arr){ RU2h6u http://blog.numino.net/ return arr.sort(function(){ 35F46H http://blog.numino.net/ return Math.random() - 0.5; t8X8NN http://blog.numino.net/ }); EHYEwR http://blog.numino.net/ } e9hYK0 http://blog.numino.net/ 以上代码看似巧妙利用了 Array.prototype.sort 实现随机,但是,却有非常严重的问题,甚至是完全错误。 mfpT90 http://blog.numino.net/ 证明 Array.prototype.sort 随机算法的错误 eE3gUJ http://blog.numino.net/ 为了证明这个算法的错误,我们设计一个测试的方法。假定这个排序算法是正确的,那么,将这个算法用于随机数组 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9],如果算法正确,那么每个数字在每一位出现的概率均等。因此,将数组重复洗牌足够多次,然后将每次的结果在每一位相加,最后对每一位的结果取平均值,这个平均值应该约等于 (0 + 9) / 2 = 4.5,测试次数越多次,每一位上的平均值就都应该越接近于 4.5。所以我们简单实现测试代码如下: aww36t http://blog.numino.net/ var arr = [0,1,2,3,4,5,6,7,8,9]; 0G58m5 http://blog.numino.net/ var res = [0,0,0,0,0,0,0,0,0,0]; 3ZhSJ6 http://blog.numino.net/ var t = 10000; FUeCTj http://blog.numino.net/ for(var i = 0; i < t; i++){ 3klGF7 http://blog.numino.net/ var sorted = shuffle(arr.slice(0)); 8Ul1Pt http://blog.numino.net/ sorted.forEach(function(o,i){ tbJr0U http://blog.numino.net/ res[i] += o; nsdx6v http://blog.numino.net/ }); Bm3sUL http://blog.numino.net/ } 6RS19l http://blog.numino.net/ res = res.map(function(o){ 73YsaG http://blog.numino.net/ return o / t; 7b8cw0 http://blog.numino.net/ }); 8VZ2y9 http://blog.numino.net/ console.log(res); hS2eQz http://blog.numino.net/ 将上面的 shuffle 方法用这段测试代码在 chrome 浏览器中测试一下,可以得出结果,发现结果并不随机分布,各个位置的平均值越往后越大,这意味着这种随机算法越大的数字出现在越后面的概率越大。 tprNS8 http://blog.numino.net/ 为什么会产生这个结果呢?我们需要了解 Array.prototype.sort 究竟是怎么作用的。 cuReRg http://blog.numino.net/ 首先我们知道排序算法有很多种,而 ECMAScript 并没有规定 Array.prototype.sort 必须使用何种排序算法。在这里,有兴趣的同学不妨看一下 JavaScriptCore 的源码实现: CRHmVh http://blog.numino.net/ 排序不是我们今天讨论的主题,但是不论用何种排序算法,都是需要进行两个数之间的比较和交换,排序算法的效率和两个数之间比较和交换的次数有关系。 cBobFx http://blog.numino.net/ 最基础的排序有冒泡排序和插入排序,原版的冒泡或者插入排序都比较了 n(n-1)/2 次,也就是说任意两个位置的元素都进行了一次比较。那么在这种情况下,如果采用前面的 sort 随机算法,由于每次比较都有 50% 的几率交换和不交换,这样的结果是随机均匀的吗?我们可以看一下例子: 51MbTW http://blog.numino.net/ function bubbleSort(arr, compare){ 3Ff1Qy http://blog.numino.net/ var len = arr.length; tIDEJE http://blog.numino.net/ for(var i = 0; i < len - 1; i++){ wOBrr4 http://blog.numino.net/ for(var j = 0; j < len - 1 - i; j++){ 1r77d9 http://blog.numino.net/ var k = j + 1; C1j6GD http://blog.numino.net/ if(compare(arr[j], arr[k]) > 0){ 0fD8Qn http://blog.numino.net/ var tmp = arr[j]; J7ULv5 http://blog.numino.net/ arr[j] = arr[k]; 63rumX http://blog.numino.net/ arr[k] = tmp; 6Uxs0j http://blog.numino.net/ } tPpzw4 http://blog.numino.net/ } Py69tD http://blog.numino.net/ } pn0j1T http://blog.numino.net/ return arr; w8Iq2A http://blog.numino.net/ } UVzgU3 http://blog.numino.net/ function shuffle(arr){ UJAP7F http://blog.numino.net/ return bubbleSort(arr, function(){ J0gsfD http://blog.numino.net/ return Math.random() - 0.5; tezv1B http://blog.numino.net/ }); jwg5c3 http://blog.numino.net/ } FM0uyj http://blog.numino.net/ var arr = [0,1,2,3,4,5,6,7,8,9]; KacV2C http://blog.numino.net/ var res = [0,0,0,0,0,0,0,0,0,0]; KbF0zM http://blog.numino.net/ var t = 10000; tQFucm http://blog.numino.net/ for(var i = 0; i < t; i++){ 3VwhjS http://blog.numino.net/ var sorted = shuffle(arr.slice(0)); ISBjhO http://blog.numino.net/ sorted.forEach(function(o,i){ 8j7kZ8 http://blog.numino.net/ res[i] += o; 4DRflB http://blog.numino.net/ }); ux3E17 http://blog.numino.net/ } qBGjjo http://blog.numino.net/ res = res.map(function(o){ cGbI5v http://blog.numino.net/ return o / t; pfSiLS http://blog.numino.net/ }); 24Qq8k http://blog.numino.net/ console.log(res); KzN6ae http://blog.numino.net/ 上面的代码的随机结果也是不均匀的,测试平均值的结果越往后的越大。(笔者之前没有复制原数组所以错误得出均匀的结论,已更正于 2016-05-10) k3io4u http://blog.numino.net/ 冒泡排序总是将比较结果较小的元素与它的前一个元素交换,我们可以大约思考一下,这个算法越后面的元素,交换到越前的位置的概率越小(因为每次只有50%几率“冒泡”),原始数组是顺序从小到大排序的,因此测试平均值的结果自然就是越往后的越大(因为越靠后的大数出现在前面的概率越小)。 UelLIe http://blog.numino.net/ 我们再换一种算法,我们这一次用插入排序: 8llpCB http://blog.numino.net/ function insertionSort(arr, compare){ wnEQo4 http://blog.numino.net/ var len = arr.length; 1ck0DZ http://blog.numino.net/ for(var i = 0; i < len; i++){ shRt5N http://blog.numino.net/ for(var j = i + 1; j < len; j++){ 6o5Xbl http://blog.numino.net/ if(compare(arr[i], arr[j]) > 0){ zsTdjh http://blog.numino.net/ var tmp = arr[i]; fxVbLU http://blog.numino.net/ arr[i] = arr[j]; zc1fd1 http://blog.numino.net/ arr[j] = tmp; aEmf8S http://blog.numino.net/ } sL6RPy http://blog.numino.net/ } PG5jPC http://blog.numino.net/ } XhB3x4 http://blog.numino.net/ return arr; Nr2xeQ http://blog.numino.net/ } 70y0wb http://blog.numino.net/ function shuffle(arr){ pMZbng http://blog.numino.net/ return insertionSort(arr, function(){ KpA1vu http://blog.numino.net/ return Math.random() - 0.5; RRN53M http://blog.numino.net/ }); pN4QoV http://blog.numino.net/ } LdZ4CU http://blog.numino.net/ var arr = [0,1,2,3,4,5,6,7,8,9]; B9UU6Y http://blog.numino.net/ var res = [0,0,0,0,0,0,0,0,0,0]; KvS4GM http://blog.numino.net/ var t = 10000; qYvn8E http://blog.numino.net/ for(var i = 0; i < t; i++){ Qbs72f http://blog.numino.net/ var sorted = shuffle(arr.slice(0)); Cmgfxs http://blog.numino.net/ sorted.forEach(function(o,i){ h4RE5a http://blog.numino.net/ res[i] += o; 4nmWKb http://blog.numino.net/ }); dE3EHo http://blog.numino.net/ } S4U2JX http://blog.numino.net/ res = res.map(function(o){ Yrchns http://blog.numino.net/ return o / t; n2UV7T http://blog.numino.net/ }); vwn32c http://blog.numino.net/ console.log(res); pIqVUT http://blog.numino.net/ 由于插入排序找后面的大数与前面的数进行交换,这一次的结果和冒泡排序相反,测试平均值的结果自然就是越往后越小。原因也和上面类似,对于插入排序,越往后的数字越容易随机交换到前面。 K6mIzi http://blog.numino.net/ 所以我们看到即使是两两交换的排序算法,随机分布差别也是比较大。除了每个位置两两都比较一次的这种排序算法外,大多数排序算法的时间复杂度介于 O(n) 到 O(n2) 之间,元素之间的比较次数通常情况下要远小于 n(n-1)/2,也就意味着有一些元素之间根本就没机会相比较(也就没有了随机交换的可能),这些 sort 随机排序的算法自然也不能真正随机。 iaeh6C http://blog.numino.net/ 我们将上面的代码改一下,采用快速排序: TXUVg2 http://blog.numino.net/ function quickSort(arr, compare){ 0yzDVE http://blog.numino.net/ arr = arr.slice(0); 8Uz064 http://blog.numino.net/ if(arr.length <= 1) return arr; OBY0R9 http://blog.numino.net/ var mid = arr[0], rest = arr.slice(1); kmIs3l http://blog.numino.net/ var left = [], right = []; CQaEcc http://blog.numino.net/ for(var i = 0; i < rest.length; i++){ Q051gW http://blog.numino.net/ if(compare(rest[i], mid) > 0){ Kmx5zN http://blog.numino.net/ right.push(rest[i]); 22ZX64 http://blog.numino.net/ }else{ 2lJ4zG http://blog.numino.net/ left.push(rest[i]); A51JE4 http://blog.numino.net/ } 5F3P25 http://blog.numino.net/ } 5iCx3G http://blog.numino.net/ return quickSort(left, compare).concat([mid]) acE2bZ http://blog.numino.net/ .concat(quickSort(right, compare)); Xpo0iC http://blog.numino.net/ } OH2fF2 http://blog.numino.net/ function shuffle(arr){ 9UqoCf http://blog.numino.net/ return quickSort(arr, function(){ n525WP http://blog.numino.net/ return Math.random() - 0.5; C54Gzl http://blog.numino.net/ }); 9PtCCe http://blog.numino.net/ } m34u3T http://blog.numino.net/ var arr = [0,1,2,3,4,5,6,7,8,9]; dVI8Ej http://blog.numino.net/ var res = [0,0,0,0,0,0,0,0,0,0]; 53BTuE http://blog.numino.net/ var t = 10000; Dy1Jfo http://blog.numino.net/ for(var i = 0; i < t; i++){ nSX2IH http://blog.numino.net/ var sorted = shuffle(arr.slice(0)); lIX3NA http://blog.numino.net/ sorted.forEach(function(o,i){ JYZ6GR http://blog.numino.net/ res[i] += o; KU7hxu http://blog.numino.net/ }); 8UQZN9 http://blog.numino.net/ } 0t5322 http://blog.numino.net/ res = res.map(function(o){ 8lstPJ http://blog.numino.net/ return o / t; Y6H4JX http://blog.numino.net/ }); Xz8JP3 http://blog.numino.net/ console.log(res); 5542D0 http://blog.numino.net/ 快速排序并没有两两元素进行比较,它的概率分布也不随机。 J3FI4j http://blog.numino.net/ 所以我们可以得出结论,用 Array.prototype.sort 随机交换的方式来随机排列数组,得到的结果并不一定随机,而是取决于排序算法是如何实现的,用 JavaScript 内置的排序算法这么排序,通常肯定是不完全随机的。 xiOWPR http://blog.numino.net/ 经典的随机排列 nvs544 http://blog.numino.net/ 所有空间复杂度 O(1) 的排序算法的时间复杂度都介于 O(nlogn) 到 O(n2) 之间,因此在不考虑算法结果错误的前提下,使用排序来随机交换也是慢的。事实上,随机排列数组元素有经典的 O(n) 复杂度的算法: U3ip5W http://blog.numino.net/ function shuffle(arr){ S74jRw http://blog.numino.net/ var len = arr.length; 67mm77 http://blog.numino.net/ for(var i = 0; i < len - 1; i++){ 15Pt5W http://blog.numino.net/ var idx = Math.floor(Math.random() * (len - i)); kEJt10 http://blog.numino.net/ var temp = arr[idx]; 8hmr8T http://blog.numino.net/ arr[idx] = arr[len - i - 1]; zIJjM7 http://blog.numino.net/ arr[len - i -1] = temp; QG8x35 http://blog.numino.net/ } CtlJ7A http://blog.numino.net/ return arr; p1a5ze http://blog.numino.net/ } 5EMq03 http://blog.numino.net/ 在上面的算法里,我们每一次循环从前 len - i 个元素里随机一个位置,将这个元素和第 len - i 个元素进行交换,迭代直到 i = len - 1 为止。 6wFsnZ http://blog.numino.net/ 我们同样可以检验一下这个算法的随机性: o2rNYo http://blog.numino.net/ function shuffle(arr){ xgnqjH http://blog.numino.net/ var len = arr.length; KkGam1 http://blog.numino.net/ for(var i = 0; i < len - 1; i++){ z55LsP http://blog.numino.net/ var idx = Math.floor(Math.random() * (len - i)); 1exuKE http://blog.numino.net/ var temp = arr[idx]; 8vv6l1 http://blog.numino.net/ arr[idx] = arr[len - i - 1]; 20Vs2Z http://blog.numino.net/ arr[len - i -1] = temp; a6au2z http://blog.numino.net/ } jz5UTQ http://blog.numino.net/ return arr; 20uz9n http://blog.numino.net/ } c5ts97 http://blog.numino.net/ var arr = [0,1,2,3,4,5,6,7,8,9]; Se8DOy http://blog.numino.net/ var res = [0,0,0,0,0,0,0,0,0,0]; 2qTv5M http://blog.numino.net/ var t = 10000; Wc9jq8 http://blog.numino.net/ for(var i = 0; i < t; i++){ TC68CN http://blog.numino.net/ var sorted = shuffle(arr.slice(0)); q1BXcF http://blog.numino.net/ sorted.forEach(function(o,i){ 6ScV4D http://blog.numino.net/ res[i] += o; e6n32Z http://blog.numino.net/ }); B9ccdG http://blog.numino.net/ } B7G3HJ http://blog.numino.net/ res = res.map(function(o){ 5WFC6P http://blog.numino.net/ return o / t; vKl9K1 http://blog.numino.net/ }); sJ6i3D http://blog.numino.net/ console.log(res); ecmTvE http://blog.numino.net/ 从结果可以看出这个算法的随机结果应该是均匀的。不过我们的测试方法其实有个小小的问题,我们只测试了平均值,实际上平均值接近只是均匀分布的必要而非充分条件,平均值接近不一定就是均匀分布。不过别担心,事实上我们可以简单从数学上证明这个算法的随机性。 f0a5cp http://blog.numino.net/ 随机性的数学归纳法证明 U3umF8 http://blog.numino.net/ 对 n 个数进行随机: f7A0q9 http://blog.numino.net/ 首先我们考虑 n = 2 的情况,根据算法,显然有 1/2 的概率两个数交换,有 1/2 的概率两个数不交换,因此对 n = 2 的情况,元素出现在每个位置的概率都是 1/2,满足随机性要求。 JF6axJ http://blog.numino.net/ 假设有 i 个数, i >= 2 时,算法随机性符合要求,即每个数出现在 i 个位置上每个位置的概率都是 1/i。 eCePI0 http://blog.numino.net/ 对于 i + 1 个数,按照我们的算法,在第一次循环时,每个数都有 1/(i+1) 的概率被交换到最末尾,所以每个元素出现在最末一位的概率都是 1/(i+1) 。而每个数也都有 i/(i+1) 的概率不被交换到最末尾,如果不被交换,从第二次循环开始还原成 i 个数随机,根据 2. 的假设,它们出现在 i 个位置的概率是 1/i。因此每个数出现在前 i 位任意一位的概率是 (i/(i+1)) * (1/i) = 1/(i+1),也是 1/(i+1)。 0EcUh3 http://blog.numino.net/ 综合 1. 2. 3. 得出,对于任意 n >= 2,经过这个算法,每个元素出现在 n 个位置任意一个位置的概率都是 1/n。 y1QtBi http://blog.numino.net/ 总结 cxIqHU http://blog.numino.net/ 一个优秀的算法要同时满足结果正确和高效率。很不幸使用 Array.prototype.sort 方法这两个条件都不满足。因此,当我们需要实现类似洗牌的功能的时候,还是应该采用巧妙的经典洗牌算法,它不仅仅具有完全随机性还有很高的效率。 iRnLE0 http://blog.numino.net/ 除了收获这样的算法之外,我们还应该认真对待这种动手分析和解决问题的思路,并且捡起我们曾经学过而被大多数人遗忘的数学(比如数学归纳法这种经典的证明方法)。 UZo8c7 http://blog.numino.net/ 有任何问题欢迎与作者探讨~ mYycYx http://blog.numino.net/ 本文转载自:https://www.h5jun.com/post/array-shuffle.html
|
|